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Abstract—The axisymmetric free inflation of an initially evlindrical membrane is examined in this
study. The initial thickness and radius distributions are in general non-uniform. The neo-Hookean
constitutive model is used. Special attention is focused on the non-lincar buckling instability under
various inflation and geometrical conditions. [t is found that for a given inflation pressure and
aspect ratio S, the thicker the cylinder ends are. the more unstable the deformation becomes. The
study also shows that for a given aspect ratio there are in general two solutions and that beyond a
maximum S value no solution exists. In some cases of pressure and thickness values the number of
bulges increases from one in the unstable cylinder profile as S is increased beyvond a certain critical
value. A similar phenomenon is observed for a long cylinder when the pressure is increased.
Although the problem is formulated to account for non-unmitorm onginal thickness and radius
distributions, only results based on linear thickness and radius variations are presented.

L INTRODUCTION

When a rubber cylindrical shell is inflated it becomes unstable at @ critical maximum
pressure. At this point local bulges may appear in the tube without rupture. I the pressure
decreases the size of the bulges may still increase. Some of the curly investigations were
conducted on an infinite cylinder (Skala, 1970 Alexander, 19715 Erwin ef al., 1983
Johnson and Soden, 1966) and a sphere (Green and Adkins, 1960 Haddow and Faulkner,
1972). In these cases an analytical solution to the balince equations is casily obtained for
most of the constitutive models commonly used. Skala (1970) correctly predicted the
experimentally observed maximum in pressure using a nco-Hookean clastic model. Alex-
ander (1971) also considered the probiem of an infinite cylindrical membrane subject to a
uniform pressure difference and an axial load, He showed that the critical maximum in
pressure remains constant with respect to the nmposed axial load when a lincar constitutive
model is used and it decreases with increasing axial load when a non-tincar model is used.
While the pressure-radius curves bused on both the linear and the non-hinear anulyses show
a maximum, only the non-lincar constitutive model leads to o minimum at a larger radius
confirming experimental observation. In an attempt to simulate the blowing of polycethylene
terephthalate (PET) bottles Erwin er af. (1983) used a functional form of the strain energy
function suggested by Ward (1971). This constitutive model led to a pressure versus radius
behaviour similar to that obtained by Alexander (1971). Similar observations are reached
when a spherical membranc is considered (Green and Adkins, 1960 ; Haddow and Faulkner,
1972). The case of a confined infinite cylinder was tackled by Johnson and Soden (1966)
using a nco-Hookean model.

When end cffects are included such as during axisymmetric inflation of a finite cylinder
the numerical treatment becomes much less tractable. Although the governing equations in
this case are ordinary differential equations and therefore amenable to standard numerical
solution techniques, the presence of boundary conditions on both ends of the cylinder
makes the usc of some kind of a shooting procedure imperative. Convergence is by no
means guaranteed given the high non-lincaritics in the equations. Morcover, the presence
of stable and unstable solutions for a given driving pressure ditference makes it even more
difficult to obtain a desired solution in one regime or the other. Similar ditlicultics are also
encountered in the case of a flat membrane (Yang and Feng. 1970 Feng and Huang, 1972
Wineman, 1976, 1978 ; Charrier et al., 1987, 1989). Benedict ¢t al. (1979) considered the
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simultaneous inflation and elongation of a fintte cyvlinder subject to an overall axial force.
To determine the limiting pressure for a given elongation ratio they implemented the method
of projected (pressure) gradient which reduces the search from two dimensions to one.
Although the method allows the systematic determination of the maximum in pressure tor
a given streteh ratio the problems inherent to the (one-dimensional) shooting procedure
remain. The special case of zero end forces was first solved by Kyvdnoiels and Spencer
(1969). This problem is. of course. simpler since only one shooting parameter is involved.
The numerical difficulties arising in the case ot a cyvlinder with fixed ends were also anticipated
by Petric and Ito (1980) in their attempt to solve the problem of inflation of a confined
ovlinder. Only the special case of a flat infinite membrane bounded on two sides was actually
considered for caleulation. More general discussions on related numerical treatments can
be found in the following: Endo et /. (1984). Riks (1972, 1979). Chen and Ji {1990). just
to name a foew. These attempted to devise numerical schemes capable of locating singular
points (such as the limit point corresponding to the maximum in pressure or other solution
paths in the presence of a bifurcation). Secondary solution paths usually arise for certain
values of the parameter(s) involved. These and related questions were addressed by
Haughton and Ogden (1979a.b) and Duffett and Reddy (1986) regarding the inflation of
finite thin and thick cylinders. Bifurcating solutions arc not explored in the present
paper and. therefore, will not be discussed any turther.

Most of the investigations mentioned above dealt with the question of instability and
related numerical difficulties in one way or another. However, actual membrane profifes
were seldom determined. The present work attempts to clucidate further on the conditions
under which instabilitics emerge. Wider ranges of inflation parameters are considered tor
various values of the aspect ratio and the end thickness of the tube. The formulation
is generalised o include non-uniform thickness and radius distributions in the original
undeformed state. The strain energy function used in the caleulation is that of the neo-
Hookean type (Skala, 1970 Kydnoiefs and Spencer, 1969 Petric and Tto, 1980). This
modcl is known to give qualitatively good agreement with experiment and is stmple enough
to wllow further isight in the non-lincar coupling which arises in the governing equations.
In fact, comparative studies were carried out using the neo-Hookean and Mooncey rubber
constitutive equations. It was tound that in the case of an infinite cylinder (Skala, 1970), for
instance, the Mooney strain function cannot predict the emergence of instability observed
beyond the maximum pressure and, instead, leads to a pressure rising to an asymptotic
constant value. On the other hand, the case of a finite eylinder (Kydnoiels and Spencer,
1969) showed that both models give rise to a maximum in the pressure but that only the
nco-Hookean model predicts the occurrence of a nearly spherical bulge at the center of the
cylinder.

2. PROBLEM FORMULATION

Consider the axisymmetric deformation of an elastic isotropic and incompressible
circular eyvlinder of non-uniform radius and thickness, and length 2L, in the undeformed
state. The thickness is assumed to be much less than any radius of curvature ; the cylinder
is thus regarded as a membrance so that any change in the detormation variables across the
thickness may be neglected. Gravity and surface tension effects are neglected. Let (7,047, x7)
be the cylindrical polar coordinates in the deformed configuration with the x” coordinate
along the cylinder axis. Note that there is no dependence on ¢ because of symmetry. The
present notation is similar to that of Petric and [to (1980). The original radius and thickness
distributions ri (&) and A,(E) are imposed functions of the axial coordinate & in the
undeformed state. Thus, a material particle currently (after deformation) located at
(r'of o x ywas originally at (e 7). The membrane is allowed to stretch up to a preimposed
length 22 with the ends of the cylinder located at x' = 0 and v = 2L,

For convenience the growing equations and boundary conditions will be formulated
in terms of dimensionless quantities. Let
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r=1rir,
x=X[L,
E=¢L, (nH

where r_ is a characteristic radial quantity taken to be the value of the cylinder radius at
the end. Using these quantities the slope in the longitudinal direction becomes

dr
= Stan g, (2)

0 being the angle between the tangent at (r. ¢, x) and the x-axis, and S the aspect ratio
given by § = L;r.. The principal stretch ratios 4, and 4, are given by

ds
AI = EE . (3)
where s = '/ L is the dimensionless arc length along the deformed membrane, and
r
Ay = —. (4)
ry
The third principal stretch ratio becomes
h l
,{ B BT e
! lln lllz (5)

where It and Ay are the final and initial membrane thicknesses respectively, non-dimen-
sionalised with respect to initial end thickness .. Note that eqn (5) results from the
incompressibility and conservation of mass conditions. Equation (3) may be rewritten as
(Petrie and fto, 1980) :

dé 1 2 dr,
dx ()., cosc’)) T dx’ ©

The constitutive equation used in the present calculations is of the hyperelastic type. For
an incompressible material (/, = 1), the strain energy density function can be expressed as

W, I) = Co(l,=3)+Coi (I, —3)

where 7, and /, are the first and second strain invariants, respectively.

In this paper we examine the neo-Hookean model (Cy, = 0). (Skala, 1970; Johnson
and Soden, 1966 ; Kydnoiefs and Spencer, 1969 ; Petrie and [to, 1980.) The choice of this
particular model is based on its suitability to account (at least qualitatively) for experimental
observations (Skala, 1970 ; Kydnoiefs and Spencer, 1969). Let T and T denote the forces
per unit length acting in the longitudinal and transverse directions, respectively. The cor-
responding dimensionless forms of T and T are then taken to be

Ty = h(2{ =13, (7
T, = h(A3=13). 8)
Note that T, and T, are non-dimensionalised with respect to Gr.. The conservation equa-

tions are well known for the present configuration and therefore will not be covered in
detail. For variable undeformed thickness and radius one obtains from the conservation of
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momentum in the longitudinal and transverse directions the following equations governing
©and 4;:

1( r r,,) R,
do _ r\roki A/ cost

: — . 9
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where R, is an inflation parameter given by

Apr.  ApL .
= Gh, SGh,’ (b
with Ap being the imposed inflation pressure. Although 4, may be expressed. in general, in
terms of the remaining variables as solution to a quartic equation (Kydnoiefs and Spencer,
1969 ; Petric and [to, 1980) eqn (10) turned out to be more convenient to use. On the one
hand a quartic equation may possess as many as four possible (real) solutions to select
from ; in the case of uniform undeformed radius and thickness distributions one can show
that only one of the four solutions leads to a positive £, value (Petric and {to, 1980). In the
present case the choice of a solution branch is far from being obvious. The differential form
given by egn (10) circumvents this difficulty since the physical solution branch is readily
adopted once an appropriate boundary condition on 4, is imposcd. On the other hand,
there are some advantages from the computational standpoint when using eqn (10) ; these
will be discussed shortly.

There are four boundary conditions needed for the integration of egns (2), (6), (9) und
(10). For the present problem the radii at the two ends of the cylinder are specitied :

rix=0)=r,, (12)

It
12
=
It
-
»
—
o
5
<
=

rx
This latter condition is equivalent to imposing
O(x=1)=0, (13b)

in case the deformation is symmetric with respect to the plane perpendicular to the cylinder
axis at x = 1. If one end of the cylinder, say at x = 0, is assumed fixed we have another
condition, namely

E(x=0) =0. (14)

which states that a particle initially at the left end of the cylinder remains subsequently at
that position. There is a variety of options available for the choice of the fourth boundary
condition (Feng and Huang, 1972; Wineman, 1976: Kydnoiefs and Spencer, 1969). One
may choose to specify the cylinder thickness at the fixed end : this is equivalent to specifying
Aratx=0:
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;‘I("‘=O)=;'l0' (158)

In this case the stretch ratio (ratio of deformed to undeformed lengths), that is &(x = 2),
will be determined as solution to eqn (6). This particular choice of boundary condition is

relevant to inflation processes involving stretching and is extensively investigated in the
present work. If a stretch ratio. &,. is imposed the fourth boundary condition becomes

(x=2)=¢,. (15b)

o

A special case of interest is when the two ends of the cylinder are held fixed ; in this case
c:=1L

3. SOLUTION PROCEDURE

The governing equations (2). (6). (9) and (10) are ordinary first order and non-linear,
and are solved subject to conditions (12)—(15). The problem is well-posed and apparently
requires no special effort for its numerical solution. There are difficulties. however, arising
from two major sources. On the one hand. for a given pressure difference or R, value one
obtains generally two solutions corresponding to stable and unstable deformations (at least
in the context of a neo-Hookean model). Therefore beyond a certain maximum R, value
there ts no solution. Some kind of an iterative scheme may be used such as the method of
projected gradient (Benedict et al., 1987) to determine the maximum pressure difference
allowed. On the other hand, not all boundary conditions are specified at one end of the
cylinder, for example, at the origin x = 0, for an initial-value-problem-type procedure to
become readily applicable. If powerful methods such as those of Runge-Kutta or Gear are
to be used, an iterative shooting scheme must simultancously be implemented. Given the
non-lincar character of the governing cquations most shooting techniques are often bound
to fail (see, tor example, Conte and de Boor, 1972). Indeed, these methods require an initial
guess for the variable(s) in question to start the iteration procedure. For a highly non-lincar
system of equations the guess must be extremely close to the actual variable(s) value(s),
thus rendering the method practically useless. One way of avoiding the shooting aspect
altogether is to use a finite-difference-type approach. In this case the resulting algebraic
(difference) equations governing the discretised variables must be solved simultancously
over the whole domain of computation with the information from both boundarics readily
incorporated. However, an initial guess for the discretised variables over the whole domain
of calculation is still required to solve the algebraic equations (in this case non-lincar) using
an iterative solver such as that of Newton-Raphson. This, as will be seen below, may still
lead to some problems of stability and convergence inherent to difference schemes.

Current calculations show that no single integration scheme works under all inflation
and geometry conditions. The present section aims at clucidating on the different advantages
and limitations of the various methods used in the present context. We now examine
separately boundary conditions (15a) and (15b). Note that conditions (12)-(14) are
assumed always valid. if condition (15a) is assumed to hold. then for a given aspect ratio
S, inflation parameter R, and 4, the stretch ratio &, will be determined as part of the
solution. In this case there is only one shooting condition to consider, namely condition
(13) (a or b) at the outer boundary. Thus, one starts integrating the governing equations
at x = 0 by guessing the value of © in an attempt to satisfy condition (13). In principle this
should constitute a straightforward numerical excrcise which may be carried out using a
sixth-order Runge-Kutta integration scheme with a modified Newton-Raphson automatic
shooting technique. This latter procedure often failed whenever non-linear effects were
pronounced, that is for large R, value or in the unstable regime. So a manual iterative
scheme had to be resorted to with no major difficulty except at very small R, values.

If the stretch ratio &, is imposed then condition (15b) must hold. The problem becomes
that of a two-dimensional shooting procedure which may be extensively tedious to carry
out manually ; the automatic shooting technique also failed in this case. A variable-step-
size-finite-difference procedure was of great assistance in this case despite its initial guess

SAS 29:1-F



74 R. E. KHAYAT er dl.

requirement on the distributions of r, 8, & and 4, as functions of x. Depending on the initial
guess provided the solution may progress towards the stable or unstable branch. Even a
marching procedure of updating the initial guess along the pressure-radius curve was not
systematic enough when it came to reaching desired stable or unstable solutions. A more
convenient way which facilitated the guessing procedure was to actually consider the
parameter R, itself as a dependent variable ; in this case we have

& _ 0 16
dx (te)
This equation had to be considered together with the set (2). (6). (9) and (10). with the
requirement of one additional boundary condition, namely the mid-cylinder radius R, :

rix=1) =R,. (17)

The results reported in the next section were obtained for a cylinder symmetric with respect
to x = 1. The tolerance in the calculations was 10~ * with an accuracy of up to the third
decimal.

4. NUMERICAL RESULTS AND DISCUSSION

Although the governing equations are formulated to include the cases of non-uniform
original thickness and radius in the undeformed state, the emphasis in this study will be on
results corresponding to uniform original thickaess and radius. The non-uniformity in the
original conliguration certainly has an influence on the non-lincar deformation and deserves
further consideration. Sceveral inflation conditions and geometrical conligurations were
examined :

4.1 Case 1:S =10, 4,y = 6 and 1.05

We first consider the case of a fixed aspect ratio maintained at § = 0. Two scparate
sets of calculations are carried out for two dilferent cylinder thicknesses, The results for a
relatively thin cylinder (4, = 6) are presented in Figs 1, 2 and 3. The inflation parameters

— S
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Fig. 1. R~R, and ©,-R, curves for § = 10and 4,, = 6.
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Fig. 4. R, R, and ©,-R,, curves for § = 10and 4,, = 1.05.

R, and @, are plotted in Fig. 1 as functions of the mid-cylinder radius R,,,. Note that R, is
not necessarily the maximuam radius, as we will see below. The pressure behaviour exhibits
the anticipated maximum separating the stable from the unstable regions while the @,
behaviour shows a monotonic increase with respect to R,,,. This latter behaviour may be of
some assistance in our attempt to understand the nature of the unstable branch (compare
with the @, curve in Fig. 4). The monotonic increase in @, reflects the absence of any bulge
in the unstable membrane profile. This is confirmed from Fig. 2 where the profiles show
the familiar behaviour in both the stable and unstable ranges. The corresponding thickness
distributions are shown in Fig. 3. In the stable range the thickness tends to decrease
monotonically with respect to the axial position and, as expected, is smallest at the middle
of the cylinder. At low pressure, in the unstable regime (curves corresponding to R, = 0.162
and 0.173), the thickness tends to become double-valued with a very steep drop in value
ncar the cylinder end. In the remaining part of the cylinder the thickness is practically
constint. It is also interesting to observe that the cylinder thickness tends to decrease
generally with increasing pressure in the stable regime in contrast to the unstable regime
where it increases when the pressure increases. This of course is due to the large volume
that the unstable inflated cylinder tends to occupy in comparison to the stable one (compare,
for instance, curves corresponding to R, = 0.189 and 0.162, thus roughly for the same
pressure, in both Figs 2 and 3).

For a relatively thick cylinder (4,4 = 1.05) the unstable solution bchaviour is fun-
damentally different from that of the stable one. Figure 4 shows a similar pressure dis-
tribution as before with the stable and unstable ranges separated by the maximum in
pressurc. However, the ©, behaviour now exhibits strong non-monotonicity with respect
to R,. The corresponding cylinder profiles are shown in Fig. 5. In the stable range @,
incrcases monotonically with respect to R, reflecting a regular stable inflation as can be
depicted from Fig. 5. There is a flattening in the cylindrical membrane almost everywhere
except near the end where the cylinder radius increases sharply. At the maximum R, value,
O, reaches a maximum and starts decreasing like R, itself when R,, increases. At this stage
the cylinder begins to exhibit a bulging part in the middle region with the flat portion
gradually receding as the pressure decreases. The emergence of the bulge gives rise to
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(<}

Fig. 5. Cylinder profiles for various R, values, § = 0 and 4,, = 105,

compressive stresses in the flat region neighbouring the ends of the cylinder. Since therg is
no stretching in that region the membrane remains flat. Note that the apparently similar
flat portion in the stable profiles do not reflect the presence of compressive forees since the
cylinder is undergoing stretching only. As the pressure decreases so does @, ; the bulge size
increases and the cylinder becomes thinner. Upon further decrease in pressure @, increases
again while the membrane displays similar profiles to those corresponding to the stable
branch after the bulge has completely disappeared. One may then conclude from the two
studies presented here (4,, = 6 and 1.05) that a solution in the unstable regime does not
necessarily reflect the presence of a bulge or buckling in the cylinder profile. It is also
interesting to note that the bulge is present only in the range of R, between the maximum
and minimum @, in Fig. 4.

4.2, Case 2. The influence of S

We now examine the influence of the aspect ratio S for various pressures and end
thicknesses. Figure 6 displays the mid-cylinder radius R,, as function of S for two inflation
parameter values, namely R, = 0.173 and 0.571, and a thickness corresponding to 4,, = 6.
It is seen that there is 2 maximum S value, §,,,.. beyond which no solution exists. The figure
shows that § tends to be larger for the lower pressure examined. Thus, the smaller the
pressure the more the cylinder has a tendency to stretch. It is also seen that the lower the
pressure the more the cylinder tends to grow for a given aspect ratio. The ©, values
corresponding to R, = 0.173 show a monotonic increase with respect to R,,. We cannot
assert, on the basis of the present steady-state calculations, whether the two branches
separated by §,., are in fact a stable and an unstable branch, respectively. One cannot,
however, exclude such a possibility as will be discussed below. Further insight may be
gained by examining the cylinder profiles in Fig. 7 for R, = 0.173. Contrary to the cases of
lower 4, values (see below) the present profiles do not exhibit any sign of buckling
instability in the membrane at any location and for any aspect ratio.

In the case of a thicker cylinder (1,0 = 1.5 and 1.05) the situation is much more
interesting. Figure 8 shows clearly the presence of two branches in the S versus R, behaviour
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Fig. 6. Dependence of mid-cylinder radius R, on S for 4,, =6 (.) R, = 0.173 (Q) 0.574. Also
shown: ©,-R,, curve for R, = 0.17

15

r(x)

10

[}

Fig. 7. Stable (——) and unstable (- --) cylinder profiles for various aspect ratios, 4, = 6 and
R, =0.173.
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Fig. & Dependence of R, on S for R, = 0.57T1. 4,4 = 6 (curve 1), 4;, = 105 (curve 2), 4,, = 1.5
(curve 3), and R, = 0371, 4,y = 1.5 (curve 4).

corresponding to o given pressure. Generally the two branches do not merge to form a
single curve as in Fig. 6, Curves 1, 2 and 3 correspond to R, = 0.571 for 4, = 6, 1.5 and
1.05, respectively (curve 1 has been reproduced here from Fig. 6 for reference). Our aim is
to examine the influence of § for the three thicknesses considered. While curve | indicates
the presence of a maximum in S, the remaining two exhibit a split between the two branches
with R,, becoming constant beyond some S value. The two branches of curve 2 remain
separated while in curve 3 they tend to merge with some kind of irregular or oscillutory
behaviour. Note that in the latter case it is difficult to tell whether the two branches did
indeed merge into a single branch or remained separated. It is to be remembered that the
solution procedure is practically incapable of distinguishing a solution to one branch or
another and thus may converge almost equally to either one of the two solutions regardless
of the initial guess imposed.

The case of 41, = 1.5 and R, = 0.371 is even more puzzling (curve 4). Here the
fluctuation in the R, value is clearly noticeable. The presence of the second branch is barely
detectable since for that relatively low pressure the cylinder remains practically flat. The
overall picture becomes much clearer as the actual cylinder profiles are now examined.

The influence of 4y, is investigated by examining the cylinder profiles for a given
pressure. Figures 9 and 10 display the profiles corresponding to R, = 0.571 for 4,, = 0.15
and 1.05, respectively. For a thinner membrane corresponding to 4,, = 6 the profiles arc
very similar to those in Fig. 7 and therefore will not be shown; they exhibit a regular
behaviour in both the stable and unstable ranges. It is also observed (although not shown)
that as § increascs the mid-cylinder radius R, increases in the stable regime whereas the
reverse occurs in the unstable regime. Similar behaviour is depicted in Fig. 9 for the thicker
cylinder (4,4 = 1.5) except that the unstable cylinder profiles tend to display some waviness
for S > 10. As the end thickness is further decreased (4,, = 1.05) the profiles exhibit some
fundamental changes in both the stable and the unstable ranges. Indeed, Fig. 10 shows an
initial increase in R, with S, but eventually R, reaches a constant value for the higher S
values with a flattening of the cylinder in the middle region. The flat region tends to occupy
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r(«)

Fig. 9. Stable (——) und unstable (- - -) ¢ylinder profiles for various aspect ratios, R, = 0.571 and
Ay = LS,

r (x)

Fig. 10. Stablc (—) and unstable ( - - -) cylinder profiles for various aspect ratios, R, = 0.571 and
A= 15.
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{h) Second set of unstable cylinder profiles for R, = 0371 and 4,, = LS.

a larger portion of the eylinder length as § increases. Note that the flat part of the cylinder
is not undergoing compression as in the case of the unstable range (sce below) since a great
deal of stretching is taking place near the cylinder ends. In the unstable range the profiles
begin to exhibit some buckling instability which becomes more pronounced as S increases.
It is interesting to observe from the figure that the compressive flat part between the mid-
cylinder region and the ends has a radius higher than the end radius of the cylinder (compare
with Fig. tla).

The case of a relatively low inflation pressure, namely R, = 0.371, leads to some further
insight regarding the mechanism of buckling instability, We have seen from Fig. 8 that the
corresponding stable branch in curve 4 in the (S, R, )-plane is practically trivial in the sense
that there is barely any (stable) inflation taking place at that pressure. Therefore, one may
expect that there remains only one branch to be considered, namely the second branch of
curve 4 in Fig. 8 which must be regarded as the unstable range of solutions. It turned out
that there is more than just one unstable solution corresponding to a point (S, R,,) of the
curve which cannot be detected on the basis of curve 4 alone. Indeed, calculations indicate
the existence of a degenerate solution beyond a certain critical value of S (approximately
S. = 20 in the present case), The first set of solutions are depicted in Fig. 11a which shows
a regular decrease in R, as S increases and eventually reaches a constant value of R, = 4.
It is scen from the figure that for S < S, = 20 the cylinder profiles are regular whereas for
§ > S, the profiles begin to exhibit a bulge in the middie of the cylinder which becomes
narrower as S increases. Note that in this case the compressive flat portion of the cylinder
is at a radius equal to that of the cylinder end (compare with unstable profiles of Figs 5
and 10). The sccond set of solutions is displayed in Fig. 11b. There docs not seem to be
any sccond solution for § < §,. Various numerical procedures and methods were
implemented in an attempt to locate a second solution without success. The cylinder profiles
exhibit the buckling instability but this time with more than just one bulge along the
cylinder. At § = S, there appears one bulge in the cylinder. Note that due to symmetry
only half of the cylinder is shown. As § increases to 30 and 40, the bulge {actually two
bulges for the whole cylinder) becomes narrower and its maximum shifts towards the middle
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of the cvlinder. As S reaches 50 there appears an additional bulge in the middle. Further
increase in S (S = 80, 100, 14)) gives rise to six bulges in the cylinder. Note that there s
practically no change in the value of the maximum radius. Additional calculations show
that the number of bulges keeps increasing with S.

4.3. Cuse3:S=100und 7, = 1.5

The calculations presented above evidently show the influence of the aspect ratio on
the cylinder profiles and instability. It was particularly found that several bulges may appear
in the unstable profiles for a very long cylinder. i.e. when S is large. For this reason it is
useful to examine the effect of the inflation parameter for a large aspect ratio. namely
S = 100. Figure 12 shows the cylinder profiles corresponding to various R, values and
/o= 1.5. [t is seen from the figure that as R, increases the buckling instability becomes
more evident with an increase in the number of bulges. Note that for a given R, all the
bulges in the profile have the same height and that this height gets larger as the pressure
increases. It is also interesting to note that as R, increases the fat portion of the cylinder
between two successive bulges becomes wider, and eventually remains constant or inde-
pendent of R, in the higher R range where the number of bulges appears to remain cqual
to four. Obviously some further calculations are needed to be more conclusive.

4.4, Case 4: In the abscence of stretch

We now consider inflation without streteh. In this case egns (2), (0). (9) and (10) are
integrated subject to boundary conditions (12), (13b), (14) and (15b) with , = 1. As
mentioned carlier, this problem involves a two-dimensional shooting procedure and there-
fore is numerically more difficult (Benedict et af., 1979). A systematic and extensive study
as in the previous cases of a cylinder with free ends is of course computationally consuming,
We have limited our investigation to three cases of S values, namely S = 5, [0 and 15, and
calculated the corresponding R, R, curves as shown in Fig. 13, All three curves show a
nuximum in pressure separating the stable from the unstable branches. For S = 15 the
nuiximum in pressure is not so well delined as opposed to the two remaining cases. There
is a sharp drop in pressure at the maximum (R, = 1.6) at which point the pressure starts

frio

Fig. [2. Unstable cylinder profiles for various R, values, S = (00 and 4, = 1.5,
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Fig. 13. R, R, curves in the absence of streteh for S = § (squares). S = 10 (diamonds) and S = [5
(circles).

increasing again with R,,. The reason for this behaviour becomes clear when the cor-
responding cylinder profiles are examined. In the low R, (stable) range the three curves
practically coincide for the § values considered. One may then tend to view S as some kind
of a similarity parameter and that there exists a universal R,-R,, curve in the low R, range.
This is certainly not casy to confirm on the basis of the governing equations (2), (6), (9)
and (10) and boundary conditions (12), (13b), (14) and (15b).

Some further insight may be gained by examining some of the cylinder profiles. Only
those corresponding to S = |5 are presented ; the two remaining cases exhibit a regular
behaviour and therefore will not be shown. It is observed from Fig. 14 that for small R,
values (R, = 0.571 and 0.786) the cylinder remains practically flat except ncar the ends
where there is a sharp increase in radius. As R, increases the flattening disappears with
some buckling (R, = 0.854). For higher R, values bulges begin to emerge. These bulges,
however, are not similar to those arising when stretching is present (see Figs 5, 10-12). In
the presence of stretching, the regions in the neighbourhood of the bulges tend to remain
flat (and often uninflated) reflecting the presence of compressive forees, whereas in the
present case the neighbouring portions to a bulge are expanded.

4.5. Case 5: Non-uniform initial thickness and radius

We finally examinc the influence of the original thickness and/or radius non-uniformity
on the deformed cylinder. Calculations were carried out for linear thickness and radius
viriations with respect to initial position. Figure 15 shows the effect of thickness variation
in the stable and unstable regimes. respectively, for two original slopes (the uniform
thickness casc is included for reference). The stable solution shows an important inflation
of the cylinder near the end (x = 0) compared to the onc in the middle (x = 1). It is also
observed from the figure that the steeper the original thickness variation, the less the cylinder
tends to inflate. The corresponding unstable solutions are somewhat surprising. The figure
shows that, the larger the slope in the original (undeformed) thickness the higher the mid-
cylinder bulge becomes. A similar but opposite effect occurs when the initial radius increases
linearly with position as can be observed from Fig. 16. The stable solution shows a final
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Fig. 16. Stable (——) and unstable (-~ -) cylinder profiles for three different slopes (b) in initial
radius variation with R, = 0.571, S = 10 and 4,4 = 1.05.

radius increasing as a function of the initial radius. The unstable solution exhibits the
reverse effect. When both the initial thickness and radius increase lincarly with position the
resuiting profiles and thickness distributions are shown in Fig. 17. In this case the effect on
the deformed cylinder due to the variation in initial thickness is counter-balanced by that
duce to the variation in initial radius. Compare the (stable) radius distributions of Fig. 17
to those of Fig. 15. Clearly, the cylinder in the former case tends to inflate less than in the
latter case due to the additional effect of initial thickness. Similar arguments apply to the
rest of the unstable profiles.

5. CONCLUSION

In this work the balance equations are derived for an clastic solid continuum. The
governing equations are generalized to include variable initial thickness and radius in the
undeformed state, The resulting equations are bulkier to handle than when the thickness
and radius are originally uniform, with the original degree of non-linearity remaining
unchanged. Although various techniques have been developed for the numerical solution
of the problem, the presence of two boundaries, as we obscrved, requires the use of a
shooting procedure which often failed given the non-lincarity of the governing equations.
The problem becomes particularly difficult when more than one shooting parameter is
involved. In this case a finite-difference integration procedure can be more adequate than
an initial-value-problem numerical solver such as Runge-Kutta. However, problems of
stability and convergence inherent to the finite-difference scheme can easily arise becausc
of the non-linearities. There is therefore no simple answer to these difficulties and a com-
bination of more than just one integration and one shooting scheme must be resorted to in
our attempt to obtain the stable and unstable inflation profiles. The present calculations
are carried out using finite-difference and sixth-order Runge-Kutta integration procedures
and a modified Newton-Raphson shooting scheme with the latter.

The numerical calculations show that the unstable solution does not always exhibit
the presence of a bulge in the deformed cylinder. We first examined the influence of the



86 R. E. KHAYAT er ul.

a

Fig. 17. Stable () and unstable ( ) cylinder profiles for three different slopes in initial
thickness and radius variations with R, = 0.571,.8 = 10 and 4, = 1.0S.

thickness at the ends of the cylinder on the deformed profiles. When the eylinder ends are
relatively thin there is no bulge in the cylinder profiles (Fig. 2). For thicker ends the bulge
in the cylinder becomes evident (Fig. S) and its height increases as the inflation pressure
decreases. The influence of the aspect ratio S has also been investigated. [t is observed that,
for a given pressure, there exists a critical aspect ratio beyond which a bulge begins to
appear in the unstable profile. The bulge is found to become narrower the larger the aspect
ratio, that is the longer the cylinder (Fig. 11a). Morcover, a second sct of solutions shows
that the number of bulges increases as S increases (Fig. 11b). Thus, long cylinders tend to
allow several bulges in their unstable inflation mode. The number of bulges may also
increase when the inflation pressure itself is varied (Fig. 12). This is also particular to long
cylinders. Finally we examined the influence of undetormed thickness and/or radius (linear)
variation on the inflated cylinder. The resulting stable and unstable profiles exhibited exactly
opposite behaviours. Forinstance, for a variable initial thickness, the stable solution showed
a pronounced growth in cylinder radius where the membrane was originally thinnest,
whereas the unstable profile gave rise to a bulge where the cylinder was originally thickest
(sce Fig. 15).

Although extensive work has been previously carried out to determine instability
conditions for inflated structures, actual calculations such as the oncs presented here are
scurce. It is obvious, from the present investigation, that there remains a wide range of
other constitutive models, inflation conditions and geometries which must be considered if
further understanding of the non-lincar buckling were to be achieved. For instance, based
on a comparative study conducted on the nco-Hookean and Mooney modcels (Kydnoiefs
and Spencer, 1969) it was found that only the former model gave rise to a bulge in the
unstable profiles. Thus, since the present calculations are based on the neo-Hookean
constitutive model for the free inflation of a rubber thin cylinder, the results above are likely
to be altered if a constitutive modcl such as Mooney's is adopted. Another interesting aspect
which may be given further consideration is the emergence of several bulges along the
inflated cylinder. It would be desirable. for instance. to determine a wider range of critical
R, and S values beyond which the number of bulges increases. One may also examine the
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effect of non-linear variations of thickness and radius in the undeformed state on the final
cylinder profiles. These considerations will undoubtedly require extensive calculations which
in turn may not be all that obvious given the numerical difficulties discussed above.
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